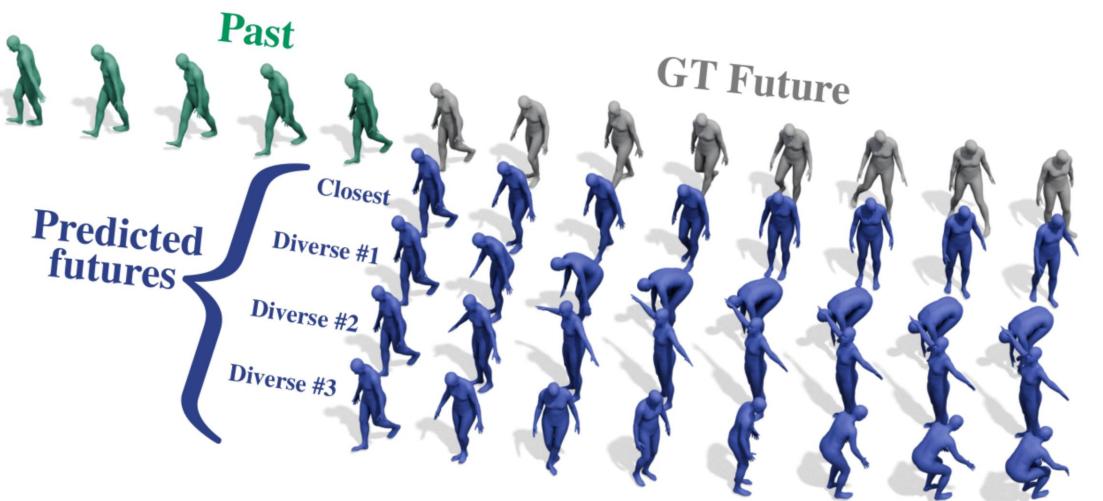


Nonisotropic Gaussian Diffusion for Realistic 3D Human Motion Prediction

Cecilia Curreli, Dominik Muhle, Abhishek Saroha, Zhenzhang Ye, Riccardo Marin, Daniel Cremers

Task: Human Motion Prediction

For a given past motion, generate multiple diverse futures



Limitations

FAIL Baselines generates *diverse* but not *realistic* futures

DLow[1]

Diverse #1

CoMusion[2]

FAIL Conventional Denoising Diffusion Probabilistic Models [3][4] (isotropic Gaussian diffusion) disregard joint relationships.

 $\mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}_{t-1}, \boldsymbol{\Sigma}_t)$ Forward noise transitions

Isotropic covariance $\Sigma_t = (1 - \alpha_t) \mathbb{I}$

 $\boldsymbol{x}_t = \sqrt{\alpha_t} \boldsymbol{x}_{t-1} + (1 - \alpha_t) \epsilon \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbb{I})$

with x_0 the true variable and x_T pure noise

Citations

- [1] Yuan et al. Dlow: Diversifying latent flows for diverse human motion prediction. ECCV20
- [2] Sun et al. Towards consistent stochastic human motion prediction via motion diffusion. ECCV24
- [3] Ho et al. Denoising diffusion probabilistic models. NeurIPS20
- [4] Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. CVPR22

Contributions

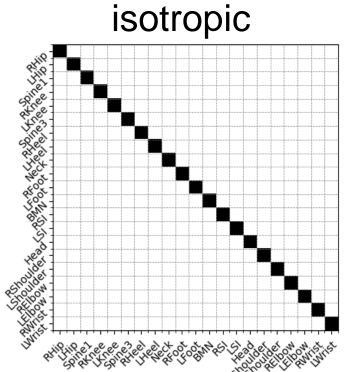
- The first **Nonisotropic Gaussian Diffusion** training and sampling formulation for a structured problem
- SkeletonDiffusion achieves SOTA performance on several datasets, also in <u>challenge scenarios</u> (zero-shot & noisy data)

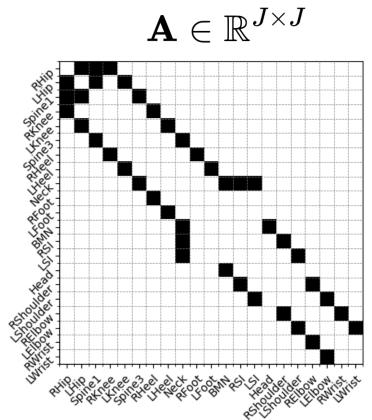
Our formulation is general and applicable to other problems!

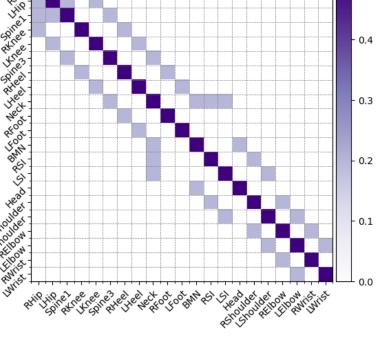
Nonisotropic Gaussian Diffusion

- A <u>training</u> and <u>sampling</u> formulation that lifts the i.i.d. assumption
- The noise reflects correlations between the J human body joints

Correlations







 $\mathbf{\Sigma}_N \in \mathbb{R}^{J imes J}$

- Positive definite
 - Normalized eigenvalues

2 Noise Blending

$$\Sigma_t = (1-lpha_t)(\gamma_t\Sigma_N + (1-\gamma_t)\mathbb{I})$$

3 Forward and Reverse Equations

$$egin{aligned} oldsymbol{x}_t &= \sqrt{ar{lpha}_t} oldsymbol{x}_0 + oldsymbol{U} ar{oldsymbol{\Lambda}}_t^{1/2} oldsymbol{\epsilon} \ oldsymbol{x}_{t-1} &= oldsymbol{\mu}_q + oldsymbol{U} oldsymbol{\Lambda}_q oldsymbol{\epsilon}, \end{aligned}$$

 $oldsymbol{\Sigma}_t = oldsymbol{U}oldsymbol{\Lambda}_toldsymbol{U}^{ op}$ Find the details in the paper!

Training Objective

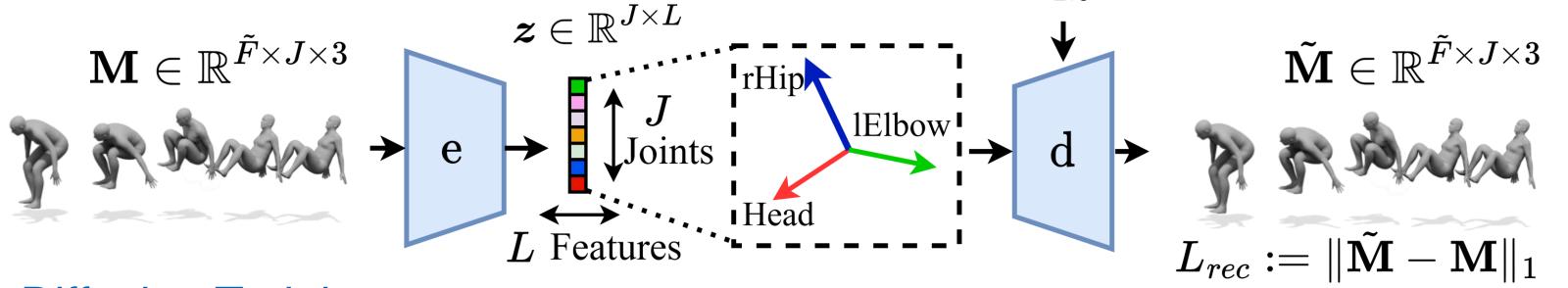
$$L_{diff}(oldsymbol{x}_{oldsymbol{ heta}},oldsymbol{x}_0)=ar{lpha}_t \|ar{oldsymbol{\Lambda}}_t^{-1/2}oldsymbol{U}^T(oldsymbol{x}_{oldsymbol{ heta}}-oldsymbol{x}_0)\|^2$$

SkeletonDiffusion

SkeletonDiffusion is a latent diffusion model implementing nonisotropic diffusion with a graph attention architecture explicitly considering joint types and connectivity

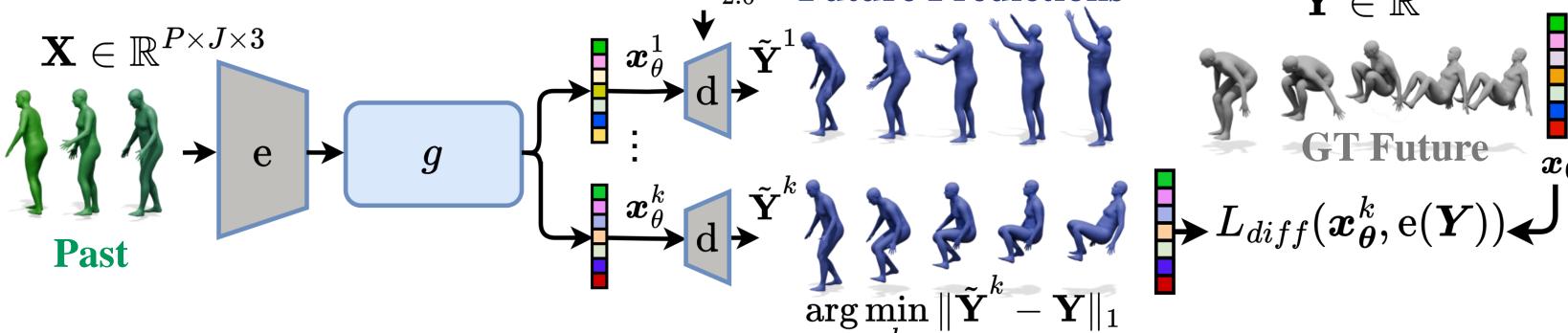
Latent Space Training

Train an autoencoder to reconstruct motions M of random length \widetilde{F} via curricular learning to learn a temporally-compressed latent space z Past $\mathbf{X}_{-2:0} \in \mathbb{R}^{2 \times J \times 3}$



Diffusion Training

Denoise $x_t \in \mathbb{R}^{J \times L}$ into latent embeddings z = e(Y) of the GT future Y conditioning on past embeddings e(X). Past $X_{-2:0}$ Future Predictions $\mathbf{Y} \in \mathbb{R}^{F imes J imes 3}$



To increase diversity, relax the loss by denoising k=50 samples. The feature dimension L is diffused isotropically.

Results — Demo online!

- Explicit inductive bias in the architecture improves body realism
- Nonisotropic diffusion improves performance: precision, diversity and limb stretching

]	Precision	Diversity	,	Body Realism			
Method	ADE ↓	APD ↑	mea str	n↓ jit	RMS str	E↓ jit	
Zero-Velocity	0.755	0.000	0.00	0.00	0.00	0.00	
DLow DivSamp CoMusion	0.590 0.564 <u>0.494</u>	13.170 24.724 1 10.848	8.41 1.17 4.04	0.40 0.82 <u>0.25</u>	11.06 16.71 <u>5.63</u>	0.58 1.0 0.52	
Ours (w/o Graph-A Ours (isotropic) SkeletonDiffusion	tt) 0.502 0.499 0.480	8.021 8.788 9.456	3.90 3.72 3.15	0.20 0.18 0.20	5.31 4.93 4.45	0.27 0.24 0.26	